HomePublications

Two-dimensional pulse dynamics and the formation of bound states on electrified falling films

Research output: Contribution to journalArticle

Open Access permissions

Open

Documents

DOI

Authors

  • Mark Blyth
  • Dmitri Tseluiko
  • Te-Sheng Lin
  • Serafim Kalliadasis

Organisational units

Abstract

The flow of an electrified liquid film down an inclined plane wall is investigated with the focus on coherent structures in the form of travelling waves on the film surface, in particular, single-hump solitary pulses and their interactions. The flow structures are analysed first using a long-wave model, which is valid in the presence of weak inertia, and second using the Stokes equations. For obtuse angles, gravity is destabilising and solitary pulses exist even in the absence of an electric field. For acute angles, spatially non-uniform solutions exist only beyond a critical value of the electric field strength; moreover, solitary-pulse solutions are present only at sufficiently high supercritical electric-field strengths. The electric field increases the amplitude of the pulses, can generate recirculation zones in the humps and alters the far-field decay of the pulse tails from exponential to algebraic with a significant impact on pulse interactions. A weak-interaction theory predicts an infinite sequence of bound-state solutions for non-electrified flow, and a finite set for electrified flow. The existence of single-hump pulse solutions and two-pulse bound states is confirmed for the Stokes equations via boundary-element computations. In addition, the electric field is shown to trigger a switch from absolute to convective instability, thereby regularising the dynamics, and this is confirmed by time-dependent simulations of the long-wave model.

Details

Original languageEnglish
Pages (from-to)210-235
Number of pages26
JournalJournal of Fluid Mechanics
Volume855
Early online date14 Sep 2018
DOIs
Publication statusPublished - 25 Nov 2018
Peer-reviewedYes

Downloads statistics

No data available

View graph of relations

ID: 139602765