HomePublications

Six hundred years of South American tree rings reveal an increase in severe hydroclimatic events since mid-20th century

Research output: Contribution to journalArticle

Open Access permissions

Open

Documents

DOI

Authors

  • Mariano S. Morales
  • Edward R. Cook
  • Jonathan Barichivich
  • Duncan A. Christie
  • Ricardo Villalba
  • Carlos Lequesne
  • Ana M. Srur
  • M. Eugenia Ferrero
  • Álvaro González-Reyes
  • Fleur Couvreux
  • Vladimir Matskovsky
  • Juan C. Aravena
  • Antonio Lara
  • Ignacio A. Mundo
  • Facundo Rojas
  • María R. Prieto
  • Jason E. Smerdon
  • Lucas O. Bianchi
  • Mariano H. Masiokas
  • Rocio Urrutia-Jalabert
  • Milagros Rodriguez-Catón
  • Ariel A. Muñoz
  • Moises Rojas-Badilla
  • Claudio Alvarez
  • Lidio Lopez
  • Brian H. Luckman
  • A. Park Williams
  • Gonzalo Velazquez
  • Diego Aliste
  • Isabella Aguilera-Betti
  • Eugenia Marcotti
  • Felipe Flores
  • Tomás Muñoz
  • Emilio Cuq
  • José A. Boninsegna

Organisational units

Abstract

South American (SA) societies are highly vulnerable to droughts and pluvials, but lack of long-term climate observations severely limits our understanding of the global processes driving climatic variability in the region. The number and quality of SA climate-sensitive tree ring chronologies have significantly increased in recent decades, now providing a robust network of 286 records for characterizing hydroclimate variability since 1400 CE. We combine this network with a self-calibrated Palmer Drought Severity Index (scPDSI) dataset to derive the South American Drought Atlas (SADA) over the continent south of 12°S. The gridded annual reconstruction of austral summer scPDSI is the most spatially complete estimate of SA hydroclimate to date, and well matches past historical dry/wet events. Relating the SADA to the Australia–New Zealand Drought Atlas, sea surface temperatures and atmospheric pressure fields, we determine that the El Niño–Southern Oscillation (ENSO) and the Southern Annular Mode (SAM) are strongly associated with spatially extended droughts and pluvials over the SADA domain during the past several centuries. SADA also exhibits more extended severe droughts and extreme pluvials since the mid-20th century. Extensive droughts are consistent with the observed 20th-century trend toward positive SAM anomalies concomitant with the weakening of midlatitude Westerlies, while low-level moisture transport intensified by global warming has favored extreme rainfall across the subtropics. The SADA thus provides a long-term context for observed hydroclimatic changes and for 21st-century Intergovernmental Panel on Climate Change (IPCC) projections that suggest SA will experience more frequent/severe droughts and rainfall events as a consequence of increasing greenhouse gas emissions.

Details

Original languageEnglish
Pages (from-to)16816-16823
Number of pages8
JournalProceedings of the National Academy of Sciences of the United States of America (PNAS)
Volume117
Issue number29
Early online date6 Jul 2020
DOIs
Publication statusPublished - 21 Jul 2020
Peer-reviewedYes

Keywords

    Research areas

  • Drought atlas, Extreme hydroclimate events, Palaeoclimate reconstruction, South America hydroclimate, Southern Hemisphere climate modes

View graph of relations

ID: 183393263