HomePublications

Dynamics of soil organic carbon following land-use change: insights from stable C-isotope analysis in black soil of Northeast China

Research output: Contribution to journalArticle

Open Access permissions

Open

Documents

DOI

Authors

Organisational units

Abstract

Intensive soil tillage is a significant factor in soil organic matter decline in cultivated soils. Both cultivation abandonment and foregoing tillage have been encouraged in the past 30 years to reduce greenhouse gas emissions and soil erosion. However, the dynamic processes of soil organic carbon (SOC) in areas of either continuous cultivation or abandonment remain unclear and inconsistent. Our aims were to assess and model the dynamic processes of SOC under continuous tillage and after cultivation abandonment in the black soil of Northeast China. Soil profiles were collected of cultivated or abandoned land with cultivation history of 0–100 years. An isotope mass balance equation was used to calculate the proportion of SOC derived from corn debris (C4) and from natural vegetation (C3) to deduce the dynamic process. Approximately 40% of SOC in the natural surface soil (0–10 cm) was eroded in the first 5 years of cultivation, increasing to about 75% within 40 years, before a slow recovery. C4 above 30 cm soil depth increased by 4.5%–5% or 0.11–0.12 g·kg−1 on average per year under continuous cultivation, while it decreased by approximately 0.34% annually in the surface soil after cultivation abandonment. The increase in the percentage of C4 was fitted to a linear equation with given intercepts in the upper 30 cm of soil in cultivated land. A significant relationship between the change of C4 and time was found only in the surface soil after abandonment of cultivation. These results demonstrate the loss and accumulation of corn-derived SOC in surface black soil of Northeast China under continuous tillage or cultivation abandonment.

Details

Original languageEnglish
Pages (from-to)746-757
Number of pages12
JournalActa Geochimica
Volume37
Issue number5
Early online date5 Jul 2018
DOIs
Publication statusPublished - Oct 2018
Peer-reviewedYes

View graph of relations

ID: 158622160

Related by author
  1. Fossil CO2 emissions in the post-COVID-19 era

    Research output: Contribution to journalArticle

  2. Global emissions are down by an unprecedented 7% — but don’t start celebrating just yet

    Research output: Contribution to specialist publicationArticle

  3. Global Carbon Budget 2020

    Research output: Contribution to journalArticle

  4. Climate Change Increases the Risk of Wildfires: September 2020

    Research output: Contribution to specialist publicationArticle